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Abstract

In recent years, the popularity of graph databases has grown rapidly. This paper 1 focuses on single-graph

as an effective model to represent information and its related graph mining techniques. In frequent pattern

mining in a single-graph setting, there are two main problems: support measure and search scheme. In

this paper, we propose a novel framework for constructing support measures that brings together existing

minimum-image-based and overlap-graph-based support measures. Our framework is built on the concept

of occurrence / instance hypergraphs. Based on that, we present two new support measures: minimum

instance (MI) measure and minimum vertex cover (MVC) measure, that combine the advantages of existing

measures. In particular, we show that the existing minimum-image-based support measure is an upper bound

of the MI measure, which is also linear-time computable and results in counts that are close to number of

instances of a pattern. Although the MVC measure is NP-hard, it can be approximated to a constant factor

in polynomial time. We also provide polynomial-time relaxations for both measures and bounding theorems

for all presented support measures in the hypergraph setting. We further show that the hypergraph-based

framework can unify all support measures studied in this paper. This framework is also flexible in that more

variants of support measures can be defined and profiled in it.

1This thesis was published in Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD ’17).
ACM, New York, NY, USA, 391-402. DOI: https://doi.org/10.1145/ 3035918.3035936. Permission is included in Appendix A.
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Chapter 1

Introduction

Graphs have become increasingly important in modeling complicated structures, such as chemical com-

pounds, bimolecular structures, social networks, aviation maps, and the Web. Recent years have witnessed

intensive studies on mining graph databases for interesting patterns. Such endeavors often involve calculat-

ing the frequency of the identified patterns (i.e., subgraphs). As shown in many problems, frequent patterns

are believed to reveal essential features of the system modeled. A clear definition of any frequent pattern

mining problem depends on a support measure as a notion of the frequency of the patterns of interest.1 In a

transaction-based frequent pattern mining setup, the development of a support measure is straightforward as

we only need to count individual graphs (in a graph database) that contain the query pattern. The problem

is more interesting and challenging in a single-graph setup, in which the frequent patterns are to be found in

only one graph that often consists of a large number of vertices and edges.

The design of a support measure is non-trivial in the single-graph environment as the measure has to

fulfill several requirements. For example, an obvious definition of support of a pattern is the number of

its occurrences in the input graph (see more details in Section 2). However, this definition possesses a

feature in that the support may increase when extending a pattern with more edges/vertices. It is not hard

to see such feature is undesirable: when a query pattern grows, the search becomes more selective thus the

support should decrease. First introduced by Vanetik et al. [16], anti-monotonicity is well accepted by the

graph mining community as an essential rule for support measure design. Vanetik et al. [16] also proposed

an anti-monotonic support measure called the maximum independent set based support (MIS). The MIS

is built on an important concept named overlap graph, which is a graph that consists of the instances of

the query pattern in the original graph (database) as vertices and the overlap of such instances as edges.

1For that, we use the words frequency and support interchangeably in this paper. We also use the word support and
the phrase support measure in the same way.

1
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The main problem of MIS is the lack of efficient algorithms – it is proved to be NP-hard. Its extensions

(e.g., minimum clique partition (MCP) measure developed by Calders et al. [3]) also suffer from the same

problem.

Another support measure named the mininum-image-based support (MNI) [2] is based on the technique

of vertex images. Being another anti-monotonic support, MNI requires only linear time to compute. The

MNI support, however, has serious drawbacks due to its lack of intuitiveness. Specifically, by ignoring

the topological structure of the query pattern and partial overlap of occurrences, MNI could arbitrarily

overestimate the frequency of a pattern, and this lowers its value in real applications. The overlap-graph-

based support (represented by MIS) and MNI support, as well as their variants, represent the two major

bodies of work in defining support measures in frequent graph mining. While both are anti-monotonic,

they stand on opposite sides of the spectra of intuitiveness and efficiency. Therefore, the main objective of

this study is to develop new support measures that combine the best of the two worlds: they are fast (with

linear/polynomial time), avoiding the high cost of computing MIS support measure, and intuitive, without

over counting patterns as in MNI-based measures.

In this paper, we first introduce the concept of occurrence/instance hypergraph, which is a graph built on

the occurrences or instances of the pattern. Based on the hypergraph concept, we define two new support

measures: the minimum instance (MI) measure and the minimum vertex cover (MVC) measure. For the

MI support measure, we show that the existing MNI support is an upper bound for it, or in other words,

it is closer to the MIS support of a pattern than the MNI. Same as MNI, the MI support is also linear-

time computable. The MVC support returns frequency that is even closer to MIS. Although computing

MVC measure is NP-hard, MVC enjoys a k-competitive approximate algorithm. Furthermore, we provide

polynomial-time computable relaxations of both MVC and MIS measures. This makes MVC and MIS more

efficient while still providing meaningful frequency values.

We further demonstrate that our new hypergraph-based method serves as a unified framework that encap-

sulates not only MI and MVC, but also the existing support measures including MIS and MNI. Specifically,

we first show that there is a natural mapping of MNI in the hypergraph setting. As to the MIS, we show it

is equivalent (in both value and computational complexity) to a support measure defined from the instance

hypergraph, the maximum independent edge set support (MIES).

2



www.manaraa.com

Data Graph:
1

2 3

5

4

Pattern:
v1 v2

Hypergraph:

1

2 3

5

4

e1 e2

e3

e4

Dual Hypergraph:
(similar to Overlap Graph)

e1 e2

e3

e4

1

2 3

4, 5

Figure 1: Example showing support measures of the pattern and the hypergraph framework

Bounding theorems that describe the differences among all support measures included in the hypergraph-

based framework are also presented.

Furthermore, we showcase the potential of the new framework as a platform for defining and profiling a

wide ranges of support measures. Figure 1 is a sketch of the hypergraph framework and displays counts of

support measures of a one-edge pattern in a small data graph.

In a nutshell, the occurrences of a pattern in a data graph are viewed as edges in hypergraph framework.

From the perspective of MIS and MVC support measures, vertices in edges are treated as one set, and the

cardinality of maximum independent edge set and minimum vertex cover set are used as support measure re-

spectively. MNI and MI support measures break the edges into subedges (subsets) and then adopt subedges’

minimum distinct images count as support. In this way, MNI and MI support measures reduce computation

complexity to linear time (in number of occurrences).

The rest of this paper is organized as follows: In Section 2, we formally define the problem and sketch the

necessary background for the problem; In Section 3, we introduce our new support measures and study their

features; In Section 4, we present a framework that unifies all support measures mentioned in this paper and

discuss its potential in defining and studying a wide range of support measures; In Section 5, we present a

brief review of related work; and we conclude our paper in Section 6.

3
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Chapter 2

Preliminaries

In this chapter, we introduce basic notations to describe the problem and the necessary background.

2.1 Labeled Graphs and Graph Isomorphism

In this paper, we only consider the case of a labeled graph, which is simply referred to as graph hereafter.

In all figures of this paper, the shade of a vertex represents its label.

DEFINITION 2.1.1 A (undirected) labeled graph G = (VG, EG, λG) consists of a set of vertices VG, a set

of edges EG ⊆ VG × VG := {(u, v) |u, v ∈ VG, u 6= v} and a labeling function λG : VG → Σ that maps

each vertex of the graph to an element of the alphabet Σ.

DEFINITION 2.1.2 A graph S = (VS , ES , λS) is a subgraph of G = (VG, EG, λG) if VS is a subset of VG

and ES is a subset of EG and for all v ∈ VS , λS(v) = λG(v).

DEFINITION 2.1.3 A pattern P = (VP , EP , λP ) is a labeled graph we use as a query against another

graph.

DEFINITION 2.1.4 Let P be a graph pattern, and p a subgraph of P , denoted by p ⊆ P . We call p a

subpattern of P , and likewise, we call P a superpattern of p.

Given the problem of finding pattern P in a large dataset graph G, we need techniques for determining

whether P is structural identical to G or a subgraph of G, and consequently decide if pattern P appears in

dataset graph G.

DEFINITION 2.1.5 A graph G1 is isomorphic to G2 if and only if there exists is a bijection (one-to-one

mapping) f , between the vertex sets of G1 and G2, that preserves vertex labels and satisfies (v1, v2) ∈ EG1

if and only if (f(v1), f(v2)) ∈ EG2 .

4
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Generally speaking, an isomorphism is an edge-preserving bijection between the vertex sets of two

graphs, say G1 and G2. In this case, one can take G1 as a copy of G2, or vise versa.

DEFINITION 2.1.6 An automorphism of graph G is an isomorphism from G onto itself.

DEFINITION 2.1.7 A graph G1 is subgraph isomorphic to G2 if and only if G1 is isomorphic to a subgraph

of G2.

In order for us to know how many times a pattern appears in a data graph, we need to define the concept

of an occurrence and an instance of the pattern in the data graph.

In this article when there is no confusion we write graph G = (VG, EG, λG) as G = (VG, EG) for

simplicity.

DEFINITION 2.1.8 Given a pattern P = (VP , EP ) and a dataset graph G = (VG, EG), an occurrence is

an isomorphism f from pattern P to a subgraph of G. That is to say f is also a subgraph isomorphism from

P to G.

DEFINITION 2.1.9 Given a pattern P = (VP , EP ) and a graph G = (VG, EG), a subgraph S of G is an

instance of pattern P in G when there is an isomorphism between P and S.

Note that occurrence and instance are two different concepts. An occurrence is an isomorphism between

pattern P and a subgraph of dataset graph G, while an instance is a subgraph of G that is isomorphic to

pattern P . There can be multiple occurrences mapping pattern P to one instance. For example, in Figure

2 the triangle-shaped pattern has 6 occurrences f1, f2, f3, f4, f5, f6 in the data graph, while it has only one

instance which is the subgraph induced by vertices 1, 2 and 3. Occurrence and instance are key components

in the support measure framework we propose.

2.2 Overlap Concepts and Support Measure

The purpose of defining support measure is to count the appearances of a pattern P in a data graph G.

The definition of support measure is given below:

DEFINITION 2.2.1 A support measure of pattern P in data graph G is a function σ : G×G→ R+, which

maps (P,G) to a non-negative number σ(P,G).

5
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One natural way of defining a pattern support measure is to use its occurrence count, however this measure

does not satisfy the anti-monotonic property, which states that the support of a pattern must not exceed that

of its subpatterns [16, 14]. A more intuitive support measure is the count of instances of the pattern in a

dataset graph. This measure, however, is not anti-monotonic either [16, 14].

Anti-monotonicity is a basic requirement for support measure because most existing frequent pattern

mining algorithms depend on it to safely prune a branch of infrequent patterns in the search space for

efficiency. Formally, we have

DEFINITION 2.2.2 A support measure σ of pattern P in G is anti-monotonic if for any pattern p and its

superpattern P , we have σ(p,G) ≥ σ(P,G).

To address the above challenge, Vanetik et al. [16] proposed the first non-trivial anti-monotonic support

measure named maximum independent set based (MIS) support. The MIS support is developed on top of the

so-called overlap graph derived from the data graph. We describe the main ideas of this method as follows.

First we should explain the concepts of overlap.

DEFINITION 2.2.3 Vertex overlap: A vertex overlap of occurrences f1 and f2 of pattern P = (VP , EP ) in

data graphG = (V,E) exists if vertex sets f1(VP ) and f2(VP ) intersect, that is, f1(VP )∩f2(VP ) 6= ∅ where

fi(VP ) = {fi(v) : v ∈ VP }, i = 1, 2. A vertex overlap of instances S1 = (VS1 , ES1) and S2 = (VS2 , ES2)

of pattern P exists if vertex sets of S1 and S2 intersect, that is, VS1 ∩ VS2 6= ∅.

DEFINITION 2.2.4 Edge overlap: An edge overlap of occurrences f1 and f2 of pattern P = (VP , EP ) in

data graph G = (V,E) exists if edge sets of f1(EP ) and f2(EP ) intersect, that is, f1(EP ) ∩ f2(EP ) 6= ∅

where fi(EP ) = {(fi(u), fi(v)) : (u, v) ∈ EP }, i = 1, 2. An edge overlap of instances S1 = (VS1 , ES1)

and S2 = (VS2 , ES2) of pattern P exists if edge sets of S1 and S2 intersect, that is, ES1 ∩ ES2 6= ∅.

DEFINITION 2.2.5 Given a pattern P = (VP , EP ) and a dataset graph G = (V,E), an occurrence (in-

stance) overlap graph is a graph O such that each vertex of O represents an occurrence (instance) of P in

G, and two vertices u and v are adjacent if the two occurrences (instances) overlap (in sense of one type of

overlap defined above).

DEFINITION 2.2.6 An independent (vertex) set of graph G = (V,E) is a subset of V , such that no two of

which are adjacent.

6
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DEFINITION 2.2.7 Given a pattern P = (VP , EP ) and a data graphG = (V,E), the maximum independent

set based support is defined as the cardinality of maximum independent vertex set of occurrence or instance

overlap graph O:

σMIS(P,G) = max
I
|I|,

where I is an independent set of O. We use symbol | · | to denote the number of elements in the set.

In this article, we mainly study how occurrences overlap and we only consider overlap in vertex.

The main drawback of the MIS support is computing efficiency - it is shown [11] that maximum inde-

pendent set problem is NP-hard in number of graph vertices. Because MIS [16] is based on overlap graph,

vertices represent instances of pattern in data graph. Thus computing MIS as a support measure is also

NP-hard.1

Bringmann and Nijssen [6] proposed a support measure called minimum image based support (MNI).

It is based on a technique different from the overlap graph. The main concept here is image, which is an

existence of a vertex in the pattern (called node hereafter) in the data graph. For example, in Figure 2, node

v1 in the pattern has 3 distinct images because there are occurrence map v1 to vertices 1, 2, 3 in data graph

(e.g., f1(v1) = 1, f3(v1) = 2 and f5(v1) = 3).

DEFINITION 2.2.8 Given a pattern P = (VP , EP ), a data graph G = (V,E), if P has m occurrences

{f1, f2, · · · , fm} in G, the minimum image based (MNI) support of P in G is defined as

σMNI(P,G) = min
v∈VP

|{fi(v) : i = 1, 2, · · · ,m}|.

In other words, for each node v in pattern P , MNI support identifies the count c of its unique images, here

c = |{fi(v) : i = 1, 2, · · · , l}|. Then MNI support measure of P in G is the minimum count c among all

nodes in pattern P .

MNI can be configured to allow certain level of tolerance in images [6]. Given a parameter k, a support

measure can be defined based on determining where each connected subgraph containing k nodes of the

pattern can be matched with each other.
1In this paper, following conventions of this field, computing time of support measures does not include that for

constructing the framework (e.g., overlap graph in the MIS case).

7
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Data Graph:
1

24 3

5

6

Pattern:
v1

v2 v3

Occurrences v1 v2 v3

f1:
f2:
f3:
f4:
f5:
f6:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

# of images: 3 3 3
MNI = 3

Figure 2: Example showing MNI overestimates the count of pattern

DEFINITION 2.2.9 Given a pattern P = (VP , EP ), a data graph G = (V,E), and a positive integer

parameter k, if P hasm occurrences {f1, f2, · · · , fm} inG, the minimum k-image based support is defined

as

σMNI(P,G, k) = min
V ′
|{fi(V ′) : i = 1, 2, · · · ,m}|,

where V ′ is connected subset of VP and |V ′| = k.

The anti-monotonicity of MNI is guaranteed by taking the node in P that is mapped to the least number

of unique nodes in G. The proof of anti-monotonicity of σMNI(P,G, k) is similar.

A clear advantage of MNI support over the NP-hard MIS support is computation time. The reason is that

it only requires a set of images for every node in a pattern, and finding the minimum number of distinct

images for each set can be done in O(n) where n is the number of occurrences of a pattern. However, MNI

support has an obvious disadvantage, that is lack of intuitiveness. Let us revisit the example in Figure 2: the

MIS support of the triangle-shaped pattern is 1 while MNI support is 3, because the minimum number of

images of each node is 3. It does not agree with our intuition that the 6 occurrences f1, f2, f3, f4, f5, f6 of

the pattern overlap and there is only one instance, which is the subgraph induced by vertices 1, 2 and 3.

The MIS and MNI supports represent the two main flavors of work in the design of support measure

for frequent subgraph mining. Both are anti-monotonic yet they stand on far ends of computing efficiency

and overestimation of pattern frequency. While the MIS returns the smallest count, there is no efficient

8
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algorithm to compute it [3]. The MNI requires linear time to compute but can return an arbitrarily large

count for a pattern [2]. Both MIS and MNI have variants other than the basic forms mentioned in this

section. We will introduce some of the variants in Section 5. Here we only emphasize that those variants do

not significantly change the features of MIS and MNI. Intuitively, the MNI support returns counts that are

closer to the number of occurrences of a pattern. However, it is more natural to define support measure of a

pattern according to the number of instances (note that MIS calculates the number of independent instances).

Recall the case in Figure 2: the number of instance is 1, however its MNI support measure is 3, and this

does not follow common sense. It is known, however, that the count of instances as a support measure is not

anti-monotonic, in this paper we present two anti-monotonic support measures that achieve counts that are

closer to the number of pattern instances and MIS support measure.

9
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Chapter 3

New Support Measures

In this chapter, we first introduce a new concept named occurrence/instance hypergraph from which our

new support measures are constructed. Such a concept simplifies the problem of finding support measures

with desired features. Note that this technique is different from the overlap graph used in MIS and the

images of occurrences used in MNI. Instead of instances (subgraphs) and occurrences (isomorphisms), we

represent a node (i.e., vertex in pattern) image as a vertex and an occurrence/instance as an edge.

3.1 Hypergraph

DEFINITION 3.1.1 A hypergraph H = (V,E) consists of a set V = {v1, v2, · · · , vn} of n vertices and a set

E = {e1, e2, · · · , em} of m edges, where each edge is a non-empty subset of V . A simple hypergraph H is

a hypergraph in which no edge is subset of another edge, that is, if ei ⊆ ej then i = j.

For discussions related to the features of relevant support measures, we also introduce the concept of dual

hypergraph.

DEFINITION 3.1.2 The dual hypergraph H∗ = (E,X) of H = (V,E) is a hypergraph whose vertices and

edges are interchanged, so that the vertices are given by E = {e1, e2, · · · , em} and the edges are given by

X = {X1, X2, · · · , Xn} where Xj = {ei : vj ∈ ei}, j = 1, 2, · · · , n, that is, Xj is the collection of all

edges in H which contain vertex vj .

As a key technique, we show how occurrences and instances of a pattern are integrated into a hypergraph

and support measures are defined within the hypergraph.

DEFINITION 3.1.3 If pattern P = (VP , EP ) has m occurrences {fi : i = 1, · · · ,m}, the occurrence

hypergraph of P in G is defined as HO = (V,E) where V = f1(VP ) ∪ f2(VP ) ∪ · · · ∪ fm(VP ), and

E = {ei : i = 1, · · · ,m}, each Ei = fi(VP ). In other words, hypergraph vertex set V is the collection of

10
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all pattern node images, and each edge ei is a collection of pattern node images mapped by occurrence fi.

We also give each ei a label fi to distinguish them from each other.

DEFINITION 3.1.4 If pattern P = (VP , EP ) has m instances {Si = (VSi , ESi) : i = 1, · · · ,m} in data

graph G, the instance hypergraph of P in G is defined as HI = (V,E) where V = VS1 ∪ VS2 ∪ · · · ∪ VSm

and E = {ei : i = 1, · · · ,m}, each ei = VSi . We also give each ei a label Si to distinguish them from each

other.

Let us use Figure 3.1 to show how the hypergraphs are constructed: the occurrence hypergraph HO =

(V,E) has vertex set V = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16, 17} and edge setE = {e1, e2, e3, e4, e5, e6}

= {{1, 2, 3}, {4, 5, 6}, {4, 6, 8}, {8, 9, 10}, {11, 13, 17}, {11, 15, 16}}. Note that in occurrence (instance)

hypergraph, each edge represents one occurrence (instance). In Figure 3.1 the instance hypergraph also has

the same edge set, hence it looks like the same as occurrence hypergraph. However, in many other situations

occurrence and instance hypergraph are different. For example in Figure 2, occurrence hypergraph of the

triangle-shaped pattern has 6 edges because there are 6 occurrences. Although all the edges have the same

vertex set {1, 2, 3}, they are considered as 6 different edges because edge labels are different. On the other

hand, instance hypergraph of pattern in Figure 2 has only one edge since there is one instance. The reason

why we give such labels for each edge is to save necessary information from data graph for studying various

support measures.

The differences between the occurrence hypergraph and instance hypergraph are partly caused by the

pattern’s topological structure, or more specifically, automorphisms. When a pattern has non-identity auto-

morphisms, multiple occurrences project the pattern to the same subgraph of dataset graph. When pattern

admits no automorphism, its occurrence and instance hypergraphs are quite similar.

As shown in Figure 3.1, pattern occurrences that are represented by hypergraph edges overlap in various

degrees and positions. While in occurrence (instance) overlap graphs, each occurrence (instance) is con-

verted to a vertex, if two occurrences (instances) overlap, an edge is generated between them. As a result,

how occurrences (instances) overlap is not fully taken into consideration. For example, in Figure 3.1, e3

and e2 overlap on two vertices but e3 and e4 overlap on one vertex. We argue that a hypergraph framework

keeps more such information and offers more insight and flexibility for further investigation, compared to

overlap graph based support measure such as MIS [16].

11
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In summary, the hypergraph is a suitable topological representation of pattern occurrences (instances) for

investigating support measures. More details will follow.
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Figure 3: Occurrence/instance hypergraph of a triangular pattern

3.2 Minimum Instance Support Measure

As described above, the MNI support measure is insensitive to structures of subgraph patterns. To address

this problem of the MNI support, we take the structure of the given pattern into consideration and define a

new support measure. Let us explain the main idea by using the example shown in Figure 4.

We can see three pattern nodes v1, v2, and v3, each has two images {1, 4}, {2, 3}, and {3, 2}, hence the

MNI support of measure of this pattern is 2. However, it misses the fact that the two occurrences overlap

on vertices 2 and 3. Apparently the two nodes v2 and v3 are symmetric in a subpattern, meaning there is

12
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Data Graph: 1 2 3 4

O Hypergraph: 1

e1
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Pattern: v1 v2 v3

Occurrences: 1 2 3
4 3 2

2 2 2# of images:
MNI = 2
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1 2 3
4 3 2

2 1
MI = 1

Figure 4: MNI vs MI support measure

automorphism on the subpattern that maps one to the other. Hence v2, v3 can be considered as a set {v2, v3},

which has one image {2, 3} as set.

This observation leads to the idea of defining a new support measure which takes advantage of patterns’

topological structure and reduces overestimation of MNI.

Before defining the new support measure, let us first introduce supportive concepts.

DEFINITION 3.2.1 Given a pattern P = (VP , EP ), a data graph G = (V,E), if P has m occurrences

{f1, f2, · · · , fm} in G, we define coarse-grained node subset W as a subset of VP .

The coarse-grained node subset image count is defined as

c(W ) = |{fi(W ) : i = 1, 2, · · · ,m}|.

In Figure 4, if coarse-grained node subset W is {v2, v3}, then its coarse-grained node subset image count

c(W ) = |{{2, 3}, {3, 2}}| = 1. For node subset M = {v2}, c(M) = |{{2}, {3}}| = 2.

Inspired by our observation, the pattern nodes that are symmetric to each other should be included in the

node subsets, hence we introduce the definition of transitive node subset as follows.

DEFINITION 3.2.2 A pair of vertices u and v in graph G is transitive if there is at least one automorphism

f of G such that f(u) = v.

Note that in this definition, u and v can be equal.

13
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THEOREM 3.1 For vertices u, v and w in graph G, if the pair of u, v and the pair v, w are both transitive,

the pair of u,w is transitive.

Proof. Since the pair of u, v and the pair v, w are both transitive in G, there are two automorphisms f and

g of G such that f(u) = v and g(v) = w. Hence the composition of f and g, denoted as f ◦ g, is also an

automorphism of G and f ◦ g(u) = w, which states that the pair u,w is also transitive in G. 2

DEFINITION 3.2.3 The transitive node subset T in pattern P = (VP , EP ) is a subset of VP such that any

pair of vertices in T is transitive in P.

The transitive node subset is a special case of coarse-grained node subset, we shall show that MNI and

MI measures can be connected by using these concepts.

Now we are ready to define new support measure of pattern P using the definition of coarse-grained node

subset image count.

DEFINITION 3.2.4 Given a pattern P = (VP , EP ), a data graph G = (V,E), let T be a transitive

node subset in a subgraph of pattern P , the collection of all such T is denoted as T = {T}. The

minimum instance based support (MI) of P in G is defined as

σMI(P,G) = min
T∈T

c(T ).

As for the example in Figure 4, pattern has coarse-grained node subsets {v1}, {v2}, {v3} and {v1, v2},

hence σMI(P,G) = 1. Now let us study the main properties of the MI support.

THEOREM 3.2 The MI support measure is anti-monotonic.

Proof. Given pattern p = (Vp, Ep) and its superpattern P = (VP , EP ) in data graph G, we assume that p

has m occurrences {f1, f2, · · · , fm} in G and P has l occurrences {f ′1, f ′2, · · · , f ′l} in G.

First, we have σMI(p,G) = minT∈T c(T ) and σMI(P,G) = minT∈T ′ c′(T ). It is obvious that T ⊆ T ′

by definition. In the next step, we shall prove that for each T ∈ T its image count c(T ) under the mappings

{f1, f2, · · · , fm} is greater or equal to its image count c′(T ) under the mappings {f ′1, f ′2, · · · , f ′l}. This

is true because any f ′i is an extension of some fi which implies f ′i(T ) = fi(T ), ∀ T ∈ T . Therefore

minT∈T c(T ) ≥ minT∈T c
′(T ) ≥minT∈T ′ c′(T ). Hence we have σMI(p,G) ≥ σMI(P,G). 2
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Figure 5: An example showing occurrences of a pattern while being extended to a superpattern

Figure 5 shows the anti-monotonicity of MI support measure via an illustrative example.

THEOREM 3.3 The MI support measure is linear-time computable.

Proof. Given σMI(p,G) = minT∈T c(T ), and there are a fixed number of T for pattern P , it is obvious

that calculating c(T ) costs O(n) time where n is the number of occurrences. Hence, σMI is linear-time

computable. 2

THEOREM 3.4 Given a pattern P and data graph G, we have

σMI(P,G) ≤ σMNI(P,G).

Proof. LetW = {{v} : v ∈ VP } we can rewrite MNI support measure as σMNI(P,G) = minW∈W c(W ).

SinceW ⊆ T , we have σMI(P,G) = minT∈T c(T ) ≤minW∈W c(W ) = σMNI(P,G) . 2

In practice, there will be many cases in which MI measure is strictly smaller than the MNI measure. As in

Figure 4, when considering additional coarse-grained node subsets, minimum count among all of them will

decrease. In such a way, we can obtain support count MI that is closer to the number of instances compared

with MNI.

In summary, we show that MI support is anti-monotonic, can be computed in linear time, and returns

frequency that is bounded by MNI.
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3.3 Minimum Vertex Cover Support Measure

The purpose of developing MI is to achieve reasonable count by avoiding overestimation by MNI. How-

ever, MI cannot handle the type of overlap shown in Figure 6. Although the number of independent instances

is only 2 (e.g., {1, 5} and {4, 8} are independent), we still get MI = MNI = 4. Moreover, there are merely

three possible coarse-grained node subsets {v1}, {v2}, {v1, v2}, their images counts are 4, 4, and 7. Hence

any variant of MI will not help either.

It seems that for some data graphs (e.g., Figure 6) the partial overlaps among pattern nodes matter, hence

dividing node set in subsets and using their individual minimum image count is not plausible in this case. We

opt to treat all pattern nodes as one set, that is, we do not break edges in occurrence (instance) hypergraph.

Hence every node image in each occurrence (instance) can be chosen to represent this occurrence (instance).

We seek a small number of node images that together represent all occurrences (instances). Intuitively we

want to find an ultimate version of minimum image count, which uses representative node image instead of

minimum count of single node images and obtains counts closer to MIS.

Now we introduce a support measure that is even smaller than MI but requires more time to compute. The

central idea is related to the well-known vertex cover problem.

DEFINITION 3.3.1 A vertex cover of hypergraph H = (V,E) is a subset of V that intersects with every

edge of H . A minimum vertex cover is a vertex cover with the smallest cardinality.

Under the occurrence/instance hypergraph framework, we can transform the minimum vertex cover to a

support measure that gives reasonable count of occurrences/instances.

DEFINITION 3.3.2 Given pattern P in data graphG, and its occurrence (instance) hypergraphH = (V,E).

The minimum vertex cover based (MVC) support of P in G is defined as

σMVC(P,G) = min
C
|C|,

where C is a vertex cover of H .

In other words, MVC is defined as the cardinality of a smallest vertex cover set in the occurrence (instance)

hypergraph of P in G. For example, in Figure 6, edges in the occurrence hypergraph are {{1, 5}, {1, 6},

{1, 7}, {1, 8}, {2, 8}, {3, 8}, {4, 8}}, and the vertex set {1, 8} is a minimum vertex cover, hence we have

σMV C = 2. The properties of MVC are discussed below.
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Figure 6: MNI measure can over-estimate count of patterns as it ignores partial overlap

THEOREM 3.5 The MVC support is anti-monotonic.

Proof. We shall show that for a pattern p and its superpattern P in graph G, we have σMV C(p,G) ≥

σMV C(P,G).

Let {f1, f2, · · · , fm} and {f ′1, f ′2, · · · , f ′m′} denote the set of all occurrences of patterns p and P respec-

tively. Let Hp and HP be occurrence hypergraphs of p and P respectively. Assume that C is a minimum

vertex cover of Hp, it intersects with every edge fi(Vp). Because any occurrence f ′ of pattern P in G must

be an extension of an occurrence fi of pattern p in G, we obtain that fi(Vp) ⊆ f ′(VP ). If C intersects

with fi(Vp), it must intersect with f ′(VP ). Hence a minimum vertex cover C of Hp is also a vertex cover

of HP . Therefore the cardinality of C is greater or equal to that of minimum vertex cover of HP , that is,

σMV C(p,G) ≥ σMV C(P,G). 2

Let us refer to Figure 5 for an illustrative example of the anti-monotonicity of σMV C : when the pattern

{v1, v2, v3} is extended to include {v4}, the MVC support is still 1. For example, vertex set {1} is a

minimum vertex cover, and it still intersects with each extended hypergraph edges hence it is a vertex cover

of superpattern’s occurrence hypergraph.

THEOREM 3.6 Given a pattern P and data graph G, we have

σMVC(P,G) ≤ σMI(P,G).

Proof. Since σMI(P,G) = minT∈T c(T ), there must be one coarse-grained node subset that achieves this

minimum count σMI . We denote this node subset as T , and its images as {fi(T ), i = 1, 2, · · · ,m}. It is
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obvious that a minimum vertex cover of {fi(T ) : i = 1, 2, · · · ,m} is also a vertex cover of occurrence

hypergraph because fi(T ) ⊆ fi(VP ). Hence σMI = |{fi(T ) : i = 1, 2, · · · ,m}| ≥ cardinality of minimum

vertex cover of {fi(T ), i = 1, 2, · · · ,m} ≥ σMVC(P,G). 2

Now we see that MVC is anti-monotonic, and is bounded by MI. In Section 4.4, we shall further show

that the MVC measure is actually close to the MIS. As to the computing efficiency, MVC is unfortunately

NP-hard – this is easy to prove as it essentially involves solving the minimum vertex cover problem in the

occurrence hypergraph. Luckily, in a k-uniform hypergraph, the best approximate algorithms achieve a

factor k − o(1) approximation under polynomial time [7]. In summary, MVC returns smaller counts but

requires more time to compute as compared to MI.
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Chapter 4

The Hypergraph Framework

A very interesting result of our work is that existing categories of support measures (i.e., MNI and MIS),

although constructed from different techniques, can also be incorporated into the new hypergraph settings.

Therefore, we have a unified framework that encapsulates all major support measures mentioned in this

paper.

4.1 MNI in Hypergraph Framework

We first show that the MNI support can be easily related to the occurrence hypergraph and the new MI

support measure. In the hypergraph setting, MNI and its variant with parameter k reduce the pattern to

subsets containing one or k pattern nodes. By revisiting the concept of coarse-grained node subset defined

in Section 3.2, we see how σMNI(P,G) and its parameterized version σMNI(P,G, k) can be interpreted in

terms of such concepts.

In a pattern P = (VP , EP ), if we letW = {{v} : v ∈ VP }, we can rewrite MNI support measure as

σMNI(P,G) = min
W∈W

c(W ).

Similarly, we letWk = {V ′ : connected V ′ ⊆ VP , |V ′| = k}, then σMNI(P,G, k) can be interpreted as

σMNI(P,G, k) = min
V ′∈Wk

c(V ′).

The above definitions show connections among σMNI(P,G), σMNI(P,G, k), and the new support mea-

sure σMI(P,G).

Figure 7 displays how MNI and MI fit in hypergraph framework. Note that MI is not simply a transfor-

mation from graph pattern to a hypergraph version.

For example, in Figure 7, if we disconnect v3 with v2 and then connect it with v1, the pair v2 and v3 is still

in a transitive node subset while it is no longer connected by one edge in pattern graph. Hypergraph edges
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Pattern: v1 v2 v3

MNI view of pattern : 1 2 3

MI view of pattern : 1 2 3

Figure 7: The MNI and MI’s view of pattern in hypergraph framework

are used to capture desired and essential features of pattern graph. From this point of view, hypergraph is

indeed a suitable and flexible framework for support measures.

4.2 MIS in Hypergraph Framework

We now show that, MIS, which is defined based on overlap graphs, can also be mapped to the hypergraph

framework. For that, we shall introduce a new measure in hypergraph setting and show it is equivalent to

MIS.

DEFINITION 4.2.1 Given a pattern P in data graph G and its occurrence (instance) hypergraph H =

(V,E), the maximum independent edge set (MIES) support measure is defined as

σMIES(H) = max
E′
|E′|,

where E′ is an independent edge set of H .

The overlap graph approach is similar in nature to how dual hypergraph is built. Edges in instance hy-

pergraph represent instances of a pattern, therefore the MIS support is equal to the maximum cardinality of

independent edge set of the instance hypergraph. For example, according to the definition of dual hyper-

graph, all edges in H are vertices in dual H∗, and they are also vertices in overlap graph. If two edges ei, ej

in H overlap on vertex v then ei, ej are contained in edge Xv in dual H∗, while (ei, ej) forms an edge in

overlap graph. Actually, each edge in dual H∗ is equivalent to a clique in the overlap graph. If H∗ is a

simple hypergraph, then it is the same as the overlap hypergraph introduced in [18]. The example in Figure

8 shows how similar dual hypergraph and overlap graph are to each other.

Within the hypergraph framework, we shall show that the MIS is equivalent to MIES, and the latter is

also anti-monotonic. To achieve such analysis, an integer programming formulation can be developed. Such
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formulation also serves as relaxation for reducing computing costs of expensive measures such as MVC and

MIES (see Section 4.3). Let us start with MVC by assuming that hypergraph H = (V,E) consists of a set

V = {v1, v2, · · · , vn} of n vertices and a set E = {e1, e2, · · · , em} of m edges. We have a variable x(v)

for each vertex v ∈ V indicating whether v is chosen in the vertex cover or not. The constraints state that in

each hypergraph edge e at least one vertex in it should be chosen and the object is to minimize that number

of vertices intersecting all edges. Now we can write:

min
∑
v∈V

x(v) (4.1)

subject to
∑
v∈ei

x(v) ≥ 1, ∀i

x(v) ∈ {0, 1}, ∀v.

By definition the dual hypergraph H∗ of H is a hypergraph whose vertices and edges are interchanged,

so that the vertices are given by {ei : i = 1, 2, · · · ,m} and the edges are X = {X1, X2, · · · , Xn} where

Xj is the collection of all edges in H which contain vertex vj . Let variable y(e) indicate whether e is in the

independent set or not. The constraints state that in each edge X only one vertex be chosen and the object

is to maximize that number of independent vertices.

Therefore the dual of minimum vertex cover problem in H is maximum independent vertex set problem

in H∗, which can be formulated as:

max
∑
e∈E

y(e) (4.2)

subject to
∑
e∈Xi

y(e) ≤ 1 ∀i

y(e) ∈ {0, 1} ∀e.

With above formulations, we can show the MIS support measure is equivalent in size to MIES.

THEOREM 4.1 Given pattern P in data graph G, and its occurrence (instance) hypergraph H = (V,E),

we have

σMIES(P,G) = σMIS(P,G).
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Proof. The problem of finding maximum independent edge set in occurrence hypergraph H is equivalent

to finding maximum independent vertex set in dual hypergraph H∗ with vertices corresponding to edges

in H and vice versa. Although the dual hypergraph and overlap graph can be different in their forms, we

can show that their sizes of maximum independent vertex set are the same. We use the linear programming

techniques to show this equivalence.

In dual hypergraph H∗, MIES is equal to the solution of maximum optimization problem (Eq. (4.2)),

while overlap graph based MIS is equal to the solution of problem: max
∑

e∈E y(e) subject to y(ej) +

y(ek) ≤ 1, if ej and ek overlap, y(e) ∈ {0, 1}, ∀e. Figure 8 shows an illustrative example of this.

We shall show that the constraints of the two maximum optimization problems are equivalent, therefore

their solution values shall be the same.

Furthermore, because any edge (two vertices) in overlap graph is contained in a dual hypergraph edge,

we only need to show that for Xi with size larger that one, the equalities max
∑

e∈Xi
y(e) subject to

y(e) ∈ {0, 1}, ∀e is equivalent to y(ej) + y(ek) ≤ 1 for any ej , ek ∈ Xi, 1 ≤ j 6= k ≤ n, where

y(ej), y(ek) are restricted to {0, 1}.

It is obvious that
∑

e∈Xi
y(e) ≤ 1 implies y(ej) + y(ek) ≤ 1 for any ej , ek ∈ Xi, 1 ≤ j 6= k ≤ n

because every y(e), e ∈ Xi is non-negative. Hence, we need to prove that y(ej) + y(ek) ≤ 1 for any

ej , ek ∈ Xi, 1 ≤ j 6= k ≤ n implies
∑

e∈Xi
y(e) ≤ 1.

Assume that y(ej) + y(ek) ≤ 1 for any ej , ek ∈ Xi, 1 ≤ j 6= k ≤ n and y(e) ∈ {0, 1},∀e ∈ Xi.

If there exits an e ∈ Xi − {ej , ek}, then there must be two more edges {e, ej} and {e, ek} in overlap

graph because all e, ei, ek overlap at vertex i. Therefore we should have y(e) + y(ej) ≤ 1, y(e) + y(ek) ≤

1, y(ej) + y(ek) ≤ 1 and y(e), y(ej), y(ek) ∈ {0, 1}, which implies y(ej) + y(ek) + y(e) ≤ 1. Similarly

we can add all other e ∈ Xi into this equality so that we have
∑

e∈Xi
y(e) ≤ 1. In the end, we obtain

σMIES(P,G) = σMIS(P,G). 2

We take Figure 8 as an example, in which the MIS support in overlap graph is 2. Taking a close look, for

example, {e1, e3} forms a maximum independent set. The MIES in instance hypergraph is also 2.

THEOREM 4.2 The MIES measure is anti-monotonic.

Proof. Since MIES is equivalent to anti-monotonic MIS, it is also anti-monotonic. 2
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Figure 8: The instance hypergraph and its dual for a small pattern in a data graph

4.3 Polynomial Time Relaxation

The relaxation technique transforms an NP-hard optimization problem into a related problem that is solv-

able in polynomial time. In addition the solution obtained from relaxation gives information about the

solution to the original problem. For example, the solution for a linear programming gives a upper (lower)

bound on the optimal solution to the original maximization (minimization) problem.

In Section 4.2, we have presented the integer programming transformation of the problems. Based on

that, we are ready to relax the integrability conditions of minimum vertex cover problem to obtain linear

programming problem and formally define the relaxed versions of the MVC and MIES measures. We shall

also show that they are both anti-monotonic.

DEFINITION 4.3.1 Given a pattern P in a data graph G, and its occurrence (instance) hypergraph H =

(V,E), where V = {v1, v2, · · · , vn} and E = {e1, e2, · · · , em}, the polynomial-time MVC support mea-

sure of pattern P in graph G is defined as

νMVC(P,G) = min
∑
v∈V

x(v) (4.3)

subject to
∑
v∈ei

x(v) ≥ 1 ∀i

0 ≤ x(v) ≤ 1 ∀v.

Likewise, we relax the integrability conditions of maximum independent edge set problem to obtain a

linear programming formulation and another polynomial-time support.
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DEFINITION 4.3.2 Given a pattern P in a data graph G, and its occurrence (instance) hypergraph H =

(V,E), where V = {v1, v2, · · · , vn} and E = {e1, e2, · · · , em}, dual hypergraph H∗ = (E,X), X =

{X1, X2, · · · , Xn}, the polynomial-time MIES support measure of pattern P in graph G is defined as

νMIES(P,G) = max
∑
e∈E

y(e) (4.4)

subject to
∑
e∈Xi

y(e) ≤ 1 ∀i

0 ≤ y(e) ≤ 1 ∀e.

THEOREM 4.3 The polynomial-time MVC support measure is anti-monotonic.

Proof. We shall show that νMVC(p,G) ≥ νMVC(P,G) for any pattern p and its superpattern P in dataset

graph G.

Let us assume that the occurrence hypergraphs of p and P in G are Hp = (V,E) and HP = (V ′, E′)

respectively. Our approach is that: we use a solution x∗ = νMV C(p,G) to the LP (4.3) to construct another

function x∗∗ such that x∗ ≥ x∗∗ ≥ νMVC(P,G), in this way we can prove that νMV C(p,G)≥ νMVC(P,G).

Let νMVC(p,G) = Σv∈V x
∗(v) be a solution to the LP (4.3) associated with Hp, where

∑
v∈e x

∗(v) ≥ 1

for any e ∈ E and 0 ≤ x∗(v) ≤ 1 for any v ∈ V . From that we construct a function x∗∗ = Σv∈V ′x∗∗(v) on

V ′ such that

x∗∗(v) =


x∗(v), if v ∈ V ′ ∩ V .

0, otherwise v ∈ V ′ − V .

Note that, for every e′ ∈ E there is some e ∈ E as its subset, hence we have

Σv∈e′x
∗∗(v) = Σv∈e′−ex

∗∗(v) + Σv∈ex
∗∗(v)

= Σv∈e′−ex
∗∗(v) + Σv∈ex

∗(v)

≥ 0 + Σv∈ex
∗(v) ≥ 1.

Therefore, x∗∗ satisfies constraints of LP (4.3) associated withHP , that is,
∑

v∈e′ x
∗∗(v) ≥ 1 for any e ∈ E′

and 0 ≤ x∗∗(v) ≤ 1 for any v ∈ V ′. Consequently, we obtain that x∗∗ ≥ min
∑

v∈V ′ x(v) = µMVC(P,G).
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Since V ⊆ V ′, it is obvious that

Σv∈V ′x∗∗(v) = Σv∈V ′−V x∗∗(v) + Σv∈V ′∩V x∗∗(v)

= 0 + Σv∈V ′∩V x
∗(v)

≤ Σv∈V x
∗(v).

Finally, we have Σv∈V x
∗(v) ≥ Σv∈V ′x∗∗(v) ≥ νMV C(P,G), thus νMVC(p,G) ≥ νMVC(P,G). 2

THEOREM 4.4 The polynomial-time MIES support measure is anti-monotonic.

Proof. The proof is similar to that of Theorem 4.3. We omit the details here. 2

4.4 Bounding Theorems

To explore the relationship among all the support measures within the new framework, we derive the

following theorems from the classic results in the hypergraph field. For the following discussions, we

want to emphasize that, since all edges in occurrence (instance) hypergraph are related to the same pattern,

they contain the same number of vertices which means that occurrence (instance) hypergraphs are uniform

hypergraphs. We first study the difference between the MIES and MVC measures.

THEOREM 4.5 Given a pattern P containing k nodes, data graphG, and occurrence (instance) hypergraph

H = (V,E), we have

σMIES(P,G) ≤ σMVC(P,G).

Proof. Assume that I is a maximum independent edge set and C a minimum vertex cover. For every edge

e ∈ I there is a corresponding vertex v ∈ C such that v ∈ e. Furthermore, for any e, e′ ∈ I , we have

e ∩ e′ = ∅, hence their corresponding vertices in C are different. Therefore, we get |I| ≤ |C| and then we

have σMIES(P,G) ≤ σMV C(P,G). 2

The above theorem shows that MVC measure is larger than the MIES (that equals MIS according to

Theorem 4.1).

Based on well-established results in linear programming [15], we obtain the following relationship be-

tween σMIS , σMV C , and support measures created from relaxation on constraints in their corresponding

linear programming problems.
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THEOREM 4.6 Given a pattern P , data graph G, and occurrence (instance) hypergraph H , we have

σMIES(P,G) ≤ νMIES(P,G) = νMV C(P,G) ≤ σMVC(P,G).

Proof. The first and last inequality are directly given by the definitions of corresponding linear programming

problems. The equality follows from the duality theorems of linear programming [15]. 2

In practice, if each hypergraph vertex is contained in relatively few edges we have a stronger bound

between the original and relaxed versions of MVC. Explorations along this direction constitute a very inter-

esting topic for future research.

Nevertheless, the results in Theorem 4.6 show that, by relaxing the original problem, we further reduce the

gap between MVC and MIES/MIS. Of course, we must emphasize that the results shown here are obtained

in the relaxed problem settings. Despite the close relationship between vertex cover and independent edge

set in graphs, without the relaxation, it is not possible to find a vertex cover under polynomial time and then

derive the complementary maximum independent set.

The comparison between σMVC , σMI and σMNI were examined in Theorems 3.4 and 3.6. Putting all

together, we have

σMIS = σMIES ≤ νMIES = νMVC ≤ σMVC ≤ σMI ≤ σMNI.

The above formula shows a series of measures that can be built in the same framework and occupy

different locations of the frequency spectrum.

4.5 Other Extensions Within the Framework

We believe by adopting the hypergraph settings, we can utilize resourceful classic hypergraph theorems

to advance further investigations and provide more thoughtful insights for connections between support

measures, or even define more support measures.

A variant of the simple overlap, called harmful overlap, was introduced in [5].

We present a new concept of structural overlap that can be compared with harmful overlap in studying

MIS-flavored support measures. Additionally, we show how structural overlap can be used in the study of

support measures.

DEFINITION 4.5.1 [5] A harmful overlap (HO) of occurrences f1 and f2 of pattern P exists, if ∃ v ∈ VP ,

such that f1(v), f2(v) ∈ f1(VP ) ∩ f2(VP ).
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Dataset Graph:

1 2 3 4

5

Pattern:

v1 v2 v3

Occurrences:

1 2 3 4

5g1

1 2 3 4

5
g2

1 2 3 4

5
g3

Figure 9: Structural overlap 6= harmful overlap

Dataset Graph:
1

2

3

4

5

6

7

8

9
f1 f2

f3

Pattern:

v1 v2 v3 v4

Simple overlap
(f2, f3)

SO
(g1, g2) (g1, g3) HO

(f1, f2)

Figure 10: Example showing relationship of structural overlap, harmful overlap, and simple overlap

DEFINITION 4.5.2 A structural overlap (SO) of occurrences f1 and f2 of pattern P exists if ∃ v, w ∈ VP ,

satisfying that v and w are contained in a transitive node subset in a subgraph of pattern P , and f1(v) =

f2(w) ∈ f1(VP ) ∩ f2(VP ).

In this section, we call the concept of vertex overlap in Definition 2.2.3 simple overlap to distinguish it

from the two new overlap concepts.

Note that structural overlap is different from harmful overlap. In Figure 9, a structural overlap of oc-

currences g1 and g2 exists because, for transitive pair v2, v3, we have g1(v3) = 3, g2(v2) = 3 ∈ {3} =

g1(VP )∩ g2(VP ). The concept of structural overlap is originated from MI support measure which considers

overlap on transitive node subsets. When calculating MI, we let node v2 and v3 form a transitive node sub-

set, it has two images {2, 3} and {3, 4}, and MI = 2. However, these two images have vertex 3 in common.

Now we have occurrences g1 and g2 overlap in structural overlap sense. In addition, we use Figures 9 and 10
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to show that structural overlap and harmful overlap are different concepts. For example, although structural

overlap of g1 and g2 exists, harmful overlap does not exist. The reason is that g1(VP ) ∩ g2(VP ) = {3}, but

3 is image of two different nodes v2, v3 where g1(v3) = 3 and g2(v2) = 3. On the other hand, a harmful

overlap of f1 and f2 exists but structural overlap does not. We state that both harmful overlap and structural

overlap implies simple overlap, and there are cases when simple overlap exists but neither harmful overlap

nor structural overlap exists (e.g., f2 and f3 in Figure 10). Harmful overlap and structural overlap can exist

at the same time (e.g., g1 and g3 in Figure 9).

Fiedler and Borgelt [5] explain that some type of overlap of two occurrences should not be considered

harmful. According to the definition of harmful overlap, for a pattern P = (VP , EP ), if a simple overlap of

its two occurrences f1 and f2 exist and there is at least one node’s images are in both of node images f1(VP )

and f2(VP ) a harmful overlap of f1 and f2 exists. A similar argument applies to our structural overlap

concept. When a simple overlap exists, in addition if one pair of nodes is transitive in a subgraph of P and

their images are in both images f1(VP ) and f2(VP ), then a structural overlap of f1 and f2 exists. That is to

say structural overlap addresses more on topological structure of the pattern which is at the core of graph

isomorphism problem.

The common ground of harmful overlap and structural overlap is that both are weaker concepts compared

to simple overlap. Hence, like harmful overlap, the concept of structural overlap can also be used in various

ways to help define frontier to explore in support measure theory. For example, instead of simple overlap,

one can use structural overlap to decide whether two occurrences (instances) overlap, and then proceed to

construct overlap graph. The resulted overlap graph is sparser (fewer edges) than the one generated from

simple overlap. Consequently, one can use MIS, MCP, and other overlap graph based measures to obtain

count of pattern occurrences (instances). In the hypergraph setting, because of its close connection to MI

support measure, structural overlap can be potentially utilized to explore variants of MI support measures.
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Chapter 5

Related Work

The frequent subgraph mining (FSM) problem is to find subgraphs in a data graph, and them enumerate

all subgraphs with support (or frequency) above some minimum support threshold. FSM can be divided into

two categories: finding frequent patterns in transactional data graph (a graph database comprising multiple

small graphs) and a single large data graph. In the past years, fruitful results have been published in the

graph-transaction setting: a few representative publications include Borgelt and Berthold [1], Yan and Han

[20, 21], Inokuchi et al. [10], Hong et al. [8], Huan et al. [9], Kuramochi and Karypis [12]. Although FSM

in a single large graph setting has been studied (e.g., Kuramochi and Karypis [13, 14], Elseidy et al. [4]), it

receives less attention. The reason is that it is more challenging in both stages of finding pattern occurrence

in large data graph and computing support.

Related to the problem of support counting in a single graph setting, currently there are two major ap-

proaches. The first one is well-established overlap graph based support measure, which was first introduced

in Vanetik [16] and its formal definitions were given in Vanetik et al. [17] together with proofs for the

sufficient and necessary conditions required for overlap graph based measure to be anti-monotonic. Several

variations and extensions of overlap graph based measure were also proposed and analyzed, including exact

and approximate MIS measures presented by Kuramochi and Karypis [14], and overlap graph based MCP

by Calders et al. [3]. In [3], the authors also propose the Lovasz measure by using the theta function that

is proven to be bounded between MIS and MCP in overlap graph. This is very similar in nature to another

measure named Schrijver graph measure [19].

A relaxation of overlap graph based MIS is given by Wang et al. [18]. Note that the concept of hypergraph

is also used in [18] to define a variant of overlap graph [16] by replacing cliques by hypergraph edges and

deleting non-dominating hypergraph edges. In our method, we do not build overlap graph, our hypergraph

vertices are node images of query pattern, and edges represent occurrences and instances.
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Chapter 6

Conclusions and Future Work

In this paper, we propose a new framework for studying support measures in frequent subgraph mining.

This framework transforms pattern and data graph into hypergraphs containing occurrences and instances of

the pattern as well as information of the original graph, in contrast to existing overlap graph techniques that

only contain the latter. By doing this, state-of-art hypergraph theorems can provide theoretical explanations

to interpret the relationship between occurrences (mapped as edges in hypergraph). Under the new hyper-

graph setting, encouraging results are achieved including the linear-time MI measure that returns counts

closer to pattern instance, the MVC measure that is very close to the MIS, and the MIES measure that is an

equivalent version of MIS under the hypergraph framework.

With the hypergraph-based framework, there are abundant opportunities for interesting theoretical and

experimental research. In particular, explorations in the following directions are worth immediate attention.

(1) New overlap concepts can be investigated, as we have briefly mentioned in Section 4.5; (2) More support

measures can be designed that fill the gap between MVC and MI. For example, it would be useful to have

a support measure with super-linear time complexity but is smaller than the counts of MI; We can also

explore the design of variations of MI that utilize a multitude of topological properties of pattern to find

coarse-grained node subsets; (4) Inclusion of other desirable features in the design of support measure.

One important example is called additiveness, meaning the computing can be done in a parallel manner

therefore it brings great value to the implementation of the theoretical results; and (5) More user control can

be introduced into the framework in defining and selecting support measures for different applications.
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